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1. Thermodynamics of Mixing

A typical situation (polymers etc.):

High temperatures: mixing

A

+

B

=

A + B

Low temperatures: phase separation

A

+

B

=

A + traces B

B + traces A
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Phase diagram

Plot the points corresponding to mixed liquids
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Minimization Condition

Why does demixing happen?

The system wants to minimize free energy

F = E − TS → min

Estimates for E and S

Energy E depends on c because of Van der Waals interactions:
molecules attract like molecules more than unlike ones. E favors
demixing. Estimate:

E ∝ c(1− c)

Entropy S favors disorder, i.e. mixing. Estimate:

S ∝ k ln c + k ln(1− c)

http://users.lk.net/~borisv
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Resulting behavior

We minimize

F = E − TS

demixing
�

��
@

@I

mixing

Result:

• High T : entropy wins. Mixing

• Low T : energy wins unless c or 1− c is small. Demixing in
the middle, mixing on the edges. Traces of A in B, traces
of B in A.
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2. Closed Loop Phase Diagrams

Guiacol-glycerol; β-picoline-water, many polymers1:
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Van der Waals forces cannot produce this—there must be some-
thing else

1T. Narayanan and A. Kumar, “Reentrant Phase Transition in Multicom-
ponent Liquid Mixtures,” Phys. Reports 249 (1994): 136–218.
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Physics of Hydrogen Bond

• Covalent bonds: two atom share electrons A :B .

– Strong selective bond (E � kT )

– (Almost) unbreakable at room temperatures

• Hydrogen bond: two atoms (usually oxygen) share a proton:
O–H ...O . Proton is much heavier than electron—weaker
quantum effects.

– Weak selective bond (E ∼ kT )

– Constantly breaking and reappearing at room temper-
atures.

These properties make hydrogen bonds fundamental for biology.
Life is a way of arranging hydrogen-bonded molecules.
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Thermodynamics of Hydrogen Bonds

When the system forms a hydrogen bonds, it wins energy and
loses translational entropy. ⇒ The number of bonds depends on
the temperature.

Mean field estimates2:

Dynamic equilibrium:

O−H ...O � O−H + O

Equilibrium condition:

nbonds = K(ndonors − nbonds)(nacceptors − nbonds)

K ∝ exp(−EH/kT )

If T increases, K and nbonds decrease!

Free energy:

F = EVdW − TS + FH , FH ∝ −kTnbonds ln K

2B. A. Veytsman, “Are Lattice Models Valid for Liquids with Hydrogen
Bonds?” J. Phys. Chem. 94 (1990): 8499–8500.
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Hydrogen Bonds and Mixing

Suppose that A and B want to make hydrogen bonds between
each other. ⇒ FH favors mixing.

1. High temperatures. −TS dominates. Mixing.

2. Lower temperatures. EVdW dominates. Not many hydrogen
bonds. Demixing.

3. Even lower temperatures. Many hydrogen bonds. FH − TS
dominates. Mixing again.

4. Even lower temperatures. Mixing or demixing depending on
EH and EVdW.

We reproduced closed loop phase digram!
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3. Computer Simulations

Goals

We have a theory for closed loop phase diagrams caused by
hydrogen bonds.

1. Verify the theory on a computer experiment

2. Look at the structure of the mixture

Since we understand what is going on, we can use a very simple
(even simplistic) model.
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Lattice Model

A simple lattice model of binary hydrogen-bonded solution3.

1. Simple cubic lattice.

2. In each cell either an A or a B (no holes).

3. Molecules attract neighbors; AB < AA = BB.

4. Molecules can form hydrogen bonds (one donor and one
acceptor). KAB > KAA = KBB.

3Michael Kotelyanskii, Boris Veytsman, and Sanat K. Kumar, “Phase Be-
havior of Associating Liquid Mixtures,” Phys. Rev. E 58/1 (1998): R12–R15.
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Elementary Operations

1. Change A for B or B for A

2. Create a bond or break a bond

The number of A or B is not constant. How do we control
composition?

Introduce a penalty µ for substituting B for A.

1. µ = 0—symmetric mixture

2. µ > 0—more A

3. µ < 0—more B

Probability for a step:

P ∝ exp (−∆E/kT + µ∆NA/kT )

This is a µPT ensemble. µ is the chemical potential4.

4Actually, the difference between µA and µB
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Phase Transitions in µPT Ensemble

Phase equilibrium between c1 and c2:

µ(c1) = µ(c2)

Let us plot c(µ):

c

µ

One phase

c

µ

c1

c2

Phase separation
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Phase Transition in Symmetric System

Our system: symmetry for substitution A↔ B. Therefore

c(−µ) = 1− c(µ)

Consequences:

1. Phase transition at µ = 0

2. Phase coexistence between cu and cl = 1− cu

0.5

1.0

c

µ

0

cu

cl
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Recipe for Phase Diagram

1. Equilibrate the system for several values of µ > 0

2. Determine
cu = lim

µ→+0
c(µ)

3. If cu = 1/2—one phase

4. If cu > 1/2—phase coexistence between cu and cl = 1− cu.
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Results

Phase Diagram

Good agreement between theory and simulations. But at low T
we see three phases, not two!
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Low Temperature Ordered Phase

This looks like a liquid crystal. Lattice model artifact—or a
nano-structure?
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4. Conclusions

1. Hydrogen bonds cause rich and interesting phase diagram.

2. Combination of statistical physics and simulations is a pow-
erful tool.

3. There is much to discover about ordered hydrogen-bonded
structures.
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