

Closed Loop Phase Diagrams in Liquid Mixtures: From Theory to Simulations

Boris Veytsman*

September 20, 2004

*E-mail: borisv@lk.net

Т	hermody	namics .		
C	losed Lo	ор		
C	omputer	·		
C	onclusio	ns		
	Home	Page		
	44	••		
	•	►		
	Page 2	2 of 19		
	Go Back			
	Find			
	Full Screen			
	Close			
	Q	uit		

1. Thermodynamics of Mixing

A typical situation (polymers etc.):

High temperatures: mixing

Low temperatures: phase separation

Phase diagram

Plot the points corresponding to mixed liquids

Thermodynamics . . . Closed Loop . . . Computer . . . Conclusions

Minimization Condition

Why does demixing happen?

The system wants to minimize free energy

 $F = E - TS \rightarrow \min$

Estimates for E and S

Energy E depends on c because of Van der Waals interactions: molecules attract like molecules *more* than unlike ones. E favors *demixing*. Estimate:

 $E \propto c(1-c)$

Entropy S favors disorder, i.e. *mixing*. Estimate:

 $S \propto k \ln c + k \ln(1-c)$

George Mason
University

School of	
Computationa	
Sciences	

Thermodynamics		
Closed Loop		
Computer		
Conclusions		

Resulting behavior

We minimize

Result:

- High T: entropy wins. Mixing
- Low T: energy wins unless c or 1 c is small. Demixing in the middle, mixing on the edges. Traces of A in B, traces of B in A.

2. Closed Loop Phase Diagrams

Guiacol-glycerol; β -picoline-water, many polymers¹:

Van der Waals forces cannot produce this—there must be something else

¹T. Narayanan and A. Kumar, "Reentrant Phase Transition in Multicomponent Liquid Mixtures," *Phys. Reports* 249 (1994): 136–218.

George Mason University	
School of Computational Sciences	
Thermodynamics	
Closed Loop	
Computer	
Conclusions	
Home Page	
44 >>	
•	
Page 7 of 19	
Go Back	
Find	
Full Screen	
Close	
Quit	

Physics of Hydrogen Bond

- Covalent bonds: two atom share electrons A:B.
 - Strong selective bond ($E \gg kT$)
 - (Almost) unbreakable at room temperatures
- Hydrogen bond: two atoms (usually oxygen) share a proton: O-H...O. Proton is *much* heavier than electron—weaker quantum effects.
 - Weak selective bond ($E \sim kT$)
 - Constantly breaking and reappearing at room temperatures.

These properties make hydrogen bonds *fundamental for biology*. Life is a way of arranging hydrogen-bonded molecules.


```
Thermodynamics...
Closed Loop...
Computer...
```

Conclusions

Thermodynamics of Hydrogen Bonds

When the system forms a hydrogen bonds, it wins energy and loses translational entropy. \Rightarrow The number of bonds depends on the temperature.

Mean field estimates²:

Dynamic equilibrium:

 $O - H \dots O \rightleftharpoons O - H + O$

Equilibrium condition:

 $n_{\rm bonds} = K(n_{\rm donors} - n_{\rm bonds})(n_{\rm acceptors} - n_{\rm bonds})$ $K \propto \exp(-E_H/kT)$

If T increases, K and n_{bonds} decrease!

Free energy:

 $F = E_{VdW} - TS + F_H, \qquad F_H \propto -kTn_{bonds} \ln K$

²B. A. Veytsman, "Are Lattice Models Valid for Liquids with Hydrogen Bonds?" *J. Phys. Chem.* 94 (1990): 8499–8500.

Thermodynamics.
Closed Loop
Computer
Conclusions
Home Page

	. ruge	
44	••	
•		
Page 9 of 19		
Go Back		
Find		
Full Screen		
Close		
Quit		

Hydrogen Bonds and Mixing

Suppose that A and B want to make hydrogen bonds between each other. \Rightarrow F_H favors mixing.

- 1. High temperatures. -TS dominates. Mixing.
- 2. Lower temperatures. E_{VdW} dominates. Not many hydrogen bonds. Demixing.
- 3. Even lower temperatures. Many hydrogen bonds. $F_H TS$ dominates. Mixing again.
- 4. Even lower temperatures. Mixing or demixing depending on E_H and E_{VdW} .

We reproduced closed loop phase digram!

Thermodynamics
Closed Loop
Computer

Conclusions

3. Computer Simulations

Goals

We have a theory for closed loop phase diagrams caused by hydrogen bonds.

- 1. Verify the theory on a computer experiment
- 2. Look at the structure of the mixture

Since we understand what is going on, we can use a very simple (even simplistic) model.

Thermodynamics.

Closed Loop...

Computer . . .

Conclusions

Home Page		
44	••	
•		
Page 11 of 19		
Go Back		
Find		
Full Screen		
Close		
Quit		

Lattice Model

A simple lattice model of binary hydrogen-bonded solution³.

- 1. Simple cubic lattice.
- 2. In each cell either an A or a B (no holes).
- 3. Molecules attract neighbors; AB < AA = BB.
- 4. Molecules can form hydrogen bonds (one donor and one acceptor). $K_{AB} > K_{AA} = K_{BB}$.

³Michael Kotelyanskii, Boris Veytsman, and Sanat K. Kumar, "Phase Behavior of Associating Liquid Mixtures," *Phys. Rev. E* 58/1 (1998): R12–R15.

George Mason University		
School of Computational Sciences		
Thermodynamics		
Closed Loop		
Computer		
Conclusions		
Home Page		
44 >>		
• •		
Page 12 of 19		
Go Back		
Find		
Full Screen		
Close		
Quit		

Elementary Operations

- 1. Change A for B or B for A
- 2. Create a bond or break a bond

The number of A or B is *not* constant. How do we control composition?

Introduce a penalty μ for substituting B for A.

- 1. $\mu = 0$ —symmetric mixture
- 2. $\mu > 0$ —more A
- 3. $\mu < 0$ —more B

Probability for a step:

 $P \propto \exp\left(-\Delta E/kT + \mu \Delta N_A/kT\right)$

This is a μPT ensemble. μ is the *chemical potential*⁴.

 $^4\text{Actually, the difference between }\mu_A$ and μ_B

Т	Thermodynamics		
С	losed Lo	оор	
С	ompute	r	
С	onclusio	ns	
	Home Page		
	••		
	Page 1	3 of 19	
	Go Back		
	Find		
Full Screen			
Class			
Close			
Quit			
	-		

Phase Transitions in μPT **Ensemble**

Phase equilibrium between c_1 and c_2 :

 $\mu(c_1) = \mu(c_2)$

Let us plot $c(\mu)$:

Ther	mod	/nam	nics	
1 1101	mouy	man	1100.	2

Closed Loop...

Computer . . .

Conclusions

Phase Transition in Symmetric System

Our system: symmetry for substitution $A \leftrightarrow B$. Therefore

$$c(-\mu) = 1 - c(\mu)$$

Consequences:

- 1. Phase transition at $\mu = 0$
- 2. Phase coexistence between c_u and $c_l = 1 c_u$

Thermodynamics.

Closed Loop...

Computer . . .

Conclusions

Ноте	e Page	
44	••	
•		
Page 1	15 of 19	
Go Back		
Find		
Full :	Screen	
CI	ose	
Ģ	ouit	

Recipe for Phase Diagram

- 1. Equilibrate the system for several values of $\mu > 0$
- 2. Determine

$$c_u = \lim_{\mu o +0} c(\mu)$$

- 3. If $c_u = 1/2$ —one phase
- 4. If $c_u > 1/2$ —phase coexistence between c_u and $c_l = 1 c_u$.

Т	hermody	/namics	
C	losed Lo	ор	
C	omputer		
C	onclusio	ns	
	Home	Page	
	44	••	
	•		
	Page <mark>1</mark>	6 of 19	
	Go Back		
	Fi	nd	
	Full S	Screen	
	Clo	ose	
	Q	uit	

Results

Phase Diagram

Good agreement between theory and simulations. But at low T we see three phases, not two!

This looks like a liquid crystal. Lattice model artifact-or a

Thermodynamics.		
Closed Loop		

Computer . . .

Conclusions

Ноте	Page	
44	••	
•		
Page <mark>1</mark>	8 of 19	
Go Back		
Find		
Full S	Screen	
Clo	ose	
Q	uit	

4. Conclusions

- 1. Hydrogen bonds cause rich and interesting phase diagram.
- 2. Combination of statistical physics *and* simulations is a powerful tool.
- 3. There is much to discover about ordered hydrogen-bonded structures.

School of	
Computationa	
Sciences	

Thermodynamics.	

Closed Loop . . . Computer . . .

Conclusions

References

- Michael Kotelyanskii, Boris Veytsman, and Sanat K. Kumar. "Phase Behavior of Associating Liquid Mixtures." *Phys. Rev. E* 58/1 (1998): R12–R15.
- T. Narayanan and A. Kumar. "Reentrant Phase Transition in Multicomponent Liquid Mixtures." *Phys. Reports* 249 (1994): 136–218.
- B. A. Veytsman. "Are Lattice Models Valid for Liquids with Hydrogen Bonds?" J. Phys. Chem. 94 (1990): 8499–8500.