next up previous
Next: Interaction Energy Up: Imperfect Gases and Liquids. Previous: Imperfect Gases and Liquids.

Quiz Answers

1.
Estimate the thermal speed of an oxygen molecule at room temperature.
Hint:
There are NA molecules in $1\,\mathrm{mol}$

Solution:
Since $\left\langle K\right\rangle=3kT/2$, average velocity is

\begin{displaymath}
\sqrt{\left\langle v^2\right\rangle} = \sqrt{2K/m}=\sqrt{3kT/m}
 \end{displaymath}

An average material scientist might not remember the mass of oxygen molecule, but she/he certainly remembers its molar mass $M=32\,\mathrm{g/mol}$. Then m=M/NA. Recalling from Thermo course that $kN_A=R=8.3\,\mathrm{J/(K\cdot mol)}$, we obtain:

\begin{displaymath}
\sqrt{\left\langle v^2\right\rangle} = \sqrt{\frac{3RT}{M}}
...
 ...{3\cdot8\cdot300}{30\cdot10^{-3}}}
 \approx500\,\mathrm{m/s} 
 \end{displaymath}

This is about $1800\,\mathrm{km/h}\approx 1000\,\mathrm{mile/h}$
2.
Calculate the chemical potential of ideal gas $\mu=(\partial
 A/\partial N)_{T,V}$.
Solution:
Since

\begin{displaymath}
A = -kTN\ln\frac{eV}{N} + Nf(T)
 \end{displaymath}


\begin{multline*}
\mu = \left(\frac{\partial A}{\partial N}\right)_{T,V} =
 -kT\...
 ...T +f(T) =\  -kT\ln\frac{V}{N} +f(T) =
 kT\ln\frac{N}{V} +f(T) 
 \end{multline*}
Chemical potential of ideal gas is kT log of the concentration (up to a constant)!

3.
Calculate the energy of the ideal gas without internal degrees of freedom ($q_{\text{internal}}=1$). If you are too lazy (or too smart) to calculate it from equation

 
E = Nf(T)-NTf'(T)

(1)

try to guess the answer. How would you do this?
Solution:
There are two ways to solve this problem.
(a)
Hard way. If $q_{\text{internal}}=1$,

\begin{displaymath}
f(T) = 3kT\ln\Lambda = \frac32 kT\ln\frac{2\pi\hbar}{mkT}
 \end{displaymath}

and

\begin{displaymath}
f'(T) = \frac32 k\ln\frac{2\pi\hbar}{mkT} - \frac32k
 \end{displaymath}

so

\begin{displaymath}
E = \frac32 NkT
 \end{displaymath}

(b)
Smart way. If there are no internal degrees of freedom, all the energy is kinetic energy K. This is 3kT/2 per particle, or 3NkT/2 per N particles

next up previous
Next: Interaction Energy Up: Imperfect Gases and Liquids. Previous: Imperfect Gases and Liquids.

© 1997 Boris Veytsman and Michael Kotelyanskii
Thu Sep 18 22:50:29 EDT 1997