next up previous
Next: Virial Expansion Up: Imperfect Gases and Liquids. Previous: Quiz Answers

Subsections


Interaction Energy

Methods For Configuration Integral Calculation

We need to calculate configuration integral

\begin{displaymath}
Z_N = \int\exp\bigl(-U_N(\tilde q)/kT)\,d\tilde q\end{displaymath}

1.
Analytic methods:
(a)
Exactly solvable problems (ideal gas, ideal crystal, 2D-lattice and others)
(b)
Expansions around solvable models: virial expansion, high- and low-temperature expansions, imperfect solids...
(c)
Mean-field theories: neglecting fluctuations
(d)
Symmetry tricks--renormalization group etc.
2.
Computer simulation (Monte Carlo)

In all cases we need U.

Pair Interactions

Assumption:
The total energy is the sum of pair interactions:

\begin{displaymath}
U_N(q_1,q_2,\dots,q_N)= \sum_{i=1}^N\sum_{j\gt i} u(q_i,q_j)
 \end{displaymath}

A good assumption for the majority of cases.
Symmetry:
For unstructured isotropic particles,

\begin{displaymath}
u(q_1,q_2)=u(r_{12}),\quad r_{12}=\left\lvert \mathbf{q}_1-\mathbf{q}_2\right\rvert
 \end{displaymath}

Intermolecular Potential: Simple Case

Let us discuss non-polar neutral monoatomic molecules. Let r be the distance between them.

1.
Molecules cannot come too close:

\begin{displaymath}
\lim_{r\to0} u(r)= \infty\end{displaymath}

2.
At large distances molecules do not interact

\begin{displaymath}
\lim_{r\to\infty} u(r)=0
 \end{displaymath}

3.
Molecules repeal each other at small distances and attract at large distances.
4.
Exact result: at $r\to\infty$ the energy is $u\sim-1/r^6$ (dispersive forces)

``Real Potential'':

\begin{figure}
\InputIfFileExists{u.pstex_t}{}{}
 \end{figure}
Hard Core Potential:
The simplest one

\begin{displaymath}
u(r) = 
 \begin{cases}
 \infty,& r<\sigma\  0,& r\gt\sigma
 \end{cases} \end{displaymath}


\begin{figure}
\InputIfFileExists{hardcore.pstex_t}{}{}
 \end{figure}
Hard Core Plus Attraction:
Slightly more complex  
 \begin{displaymath}
 u(r) = 
 \begin{cases}
 \infty,& r<\sigma\  -\epsilon(\sigma/r)^6,& r\gt\sigma
 \end{cases} \end{displaymath} (2)

\begin{figure}
\InputIfFileExists{soft.pstex_t}{}{}
 \end{figure}
Lennard-Jones Potential:
The favorite among simulators

\begin{displaymath}
u(r) = \epsilon\left[\left(\frac{\sigma}{r}\right)^{12} -
 \left(\frac{\sigma}{r}\right)^{6}\right] 
 \end{displaymath}

At $r\gg\sigma$ potential behaves as -1/r6--correct. At $r\ll\sigma$ potential diverges $u\to\infty$--correct.

Why 12? Because computers calculate x2 very fast!

Intermolecular Potential: Other Cases

If you want to be realistic, you could add


next up previous
Next: Virial Expansion Up: Imperfect Gases and Liquids. Previous: Quiz Answers

© 1997 Boris Veytsman and Michael Kotelyanskii
Thu Sep 18 22:50:29 EDT 1997