next up previous
Up: Maximal Work, Minimal Work Previous: Thermodynamic Stability

Quiz

1.
In equation (2) we implicitly assumed $N=\mathit{const}$. If the number of particles changes, the correct expression for $R_{\min}$ should be:
(a)
$ R_{\min} = \Delta E - T_0 \, \Delta S + P_0 \,\Delta V
 -\mu\,\Delta N$
(b)
$ R_{\min} = \Delta E - T_0 \, \Delta S + P_0 \,\Delta V
 -N\,\Delta \mu$
(c)
$ R_{\min} = \Delta E - T_0 \, \Delta S + P_0 \,\Delta V
 -\mu N$
(d)
$ R_{\min} = \Delta E - T_0 \, \Delta S + P_0 \,\Delta V
 + \mu N$
2.
From the convexity condition follows (check all right statements):
(a)
$(\partial A/\partial N)_{T,V} \gt$
(b)
$(\partial^2 A/\partial N^2)_{T,V} \gt$
(c)
$(\partial^2 A/\partial N^2)_{T,V} <0$
(d)
$(\partial A/\partial T)_{N,V} \gt$
(e)
$(\partial^2 A/\partial T^2)_{N,V} \gt$
(f)
$(\partial^2 A/\partial T^2)_{N,V} <0$


© 1997 Boris Veytsman and Michael Kotelyanskii
Fri Sep 12 00:09:21 EDT 1997