next up previous
Next: Quiz Up: Maximal Work, Minimal Work Previous: Maximal and Minimal Work

Subsections


Thermodynamic Stability

General Condition

The system is stable if the total entropy $S_{\text{tot}}$ has maximum. Equivalently, $R_{\min}$ is positive for any deviation.

It means that:

Stability and Metastability

There are two kinds of minima--local and global
\begin{figure*}
 \InputIfFileExists{stability.pstex_t}{}{}\end{figure*}

Glasses--many metastable minima:
\begin{figure*}
 \InputIfFileExists{glass.pstex_t}{}{}\end{figure*}

Concave and Convex Functions

A body at constant pressure and temperature. Equilibrium condition: $G\mapsto\min$

What is the equilibrium volume V for the given pressure?

\begin{displaymath}
A(V)+P_0V \mapsto \min\end{displaymath}

It means that:
1.
First derivative should be zero:

\begin{displaymath}
P = -\left(\frac{\partial A}{\partial V}\right)_T = P_0
 \end{displaymath}

This is mechanical equilibrium condition
2.
Second derivative should be positive:

\begin{displaymath}
\left(\frac{\partial^2 A}{\partial V^2}\right)_T \gt
 \end{displaymath}

This is convexity condition.
Definition:
A function f(x) is convex if f''(x)>0 and concave if f''(x)<0:
\begin{figure*}
 \InputIfFileExists{convex.pstex_t}{}{}
 \end{figure*}
Mnemonics:
Concave = ``no coffee''
We proved, that A is a convex function of volume.

If $(\partial^2 A/\partial V^2)_T\gt$, we can make this point V a minimum by changing P. If $(\partial^2 A/\partial V^2)_T<0$, we cannot help! Since

\begin{displaymath}
\left(\frac{\partial A}{\partial V}\right)_T = -P\end{displaymath}

we proved that

\begin{displaymath}
\left(\frac{\partial P}{\partial V}\right)_T <0\end{displaymath}

General Statement:
Thermodynamic potentials are convex functions of their extensive arguments.

Once again Legendre Transforms

We now can prove that Legendre Transform of thermodynamic potentials is always possible!

\begin{displaymath}
p=f'(x), \quad p=p(x) \leftrightarrow x = x(p)\end{displaymath}

To invert p(x), we need $p'(x)\ne0$. But this follows from the convexity condition p'(x)=f''(x)>0!
Theorem:
Thermodynamic potentials are concave functions of their intensive variables.
Proof:
If g(p) is the Legendre transformation of f(x), then g'(p)=-x and

\begin{displaymath}
g''(p)= - \frac{dx}{dp} = -\left(\frac{dp}{dx}\right)^{-1} <0 
 \end{displaymath}

Fluctuations of Volume. Gauss Distribution

We know the average volume of a given body V0. What is the probability to obtain V?

We start from the formula:

\begin{displaymath}
\Prob(V)\sim\exp(-\Delta G/kT)\end{displaymath}

We obtain:
\begin{multline*}
\Delta G = \Delta A + P\, \Delta V =\  \left(\frac{\partial
 ...
 ...^2 A}{\partial V^2}\right)_{T}\,(\Delta
 V)^2 + P\,\Delta V+\dots\end{multline*}

Since

\begin{displaymath}
\left(\frac{\partial A}{\partial V}\right)_T = -P\end{displaymath}

we are left with

\begin{displaymath}
\Prob(V)\sim\exp\left[ - \frac{1}{2kT}\left(\frac{\partial^2 A}{\partial
 V^2}\right)_{T}\,(\Delta V)^2\right]\end{displaymath}

Isothermic compressibility:
We define

\begin{displaymath}
\alpha_T = - \frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_T
 \end{displaymath}

This is an intensive variable (why?).
Then

\begin{displaymath}
\frac12\left(\frac{\partial^2 A}{\partial
 V^2}\right)_{T} =...
 ...(\frac{\partial P}{\partial V}\right)_T =
 \frac{1}{V\alpha_T} \end{displaymath}

and

\begin{displaymath}
\Prob(V)=\frac{1}{\sqrt{2\pi kTV \alpha_T}}\exp\left[-\frac{(\Delta
 V)^2}{2kT V\alpha_T} \right]\,dV\end{displaymath}

This is called Gauss Distribution

Average values:

\begin{displaymath}
\left\langle \Delta V\right\rangle = 0,\quad
 \left\langle (\Delta V)^2\right\rangle = kTV\alpha_T\end{displaymath}

and

\begin{displaymath}
\frac{\sqrt{\left\langle (\Delta V)^2\right\rangle}}{V} = \frac{\sqrt{kT\alpha_T}}{\sqrt
 V}\end{displaymath}

Once again,

\begin{displaymath}
\alpha_T\gt,\quad \left(\frac{\partial P}{\partial V}\right)_T <0\end{displaymath}


\begin{figure*}
 \InputIfFileExists{bell.pslatex}{}{}\end{figure*}

Once again maximal term method: at $V\to\infty$ the width becomes zero!


next up previous
Next: Quiz Up: Maximal Work, Minimal Work Previous: Maximal and Minimal Work

© 1997 Boris Veytsman and Michael Kotelyanskii
Fri Sep 12 00:09:21 EDT 1997