next up previous
Next: Self-Consistent Field Theory Up: Mean Field Approach Previous: General Idea

Subsections


Flory Theory

Approximation

Lattice gas analogy--we have N cells, Np particles A and N-Np particles B. We will use canonical ensemble (Ising model for magnetics corresponds to grand canonical ensemble!). Partition function:  
 \begin{displaymath}
 Q = \sum_{\substack{\{\sigma\}\  N_p=\mathit{const}}} \exp\bigl(-\beta
 E(\{\sigma\}\bigr) \end{displaymath} (1)
Flory idea: substitute (1) by

\begin{displaymath}
Q\approx\mathcal{N}\exp\bigl(-\beta\left\langle E\right\rangle\bigr) \end{displaymath}

Free Energy

The number of terms

\begin{displaymath}
\mathcal{N} = \frac{N!}{N_p!(N-N_p)!}\end{displaymath}

Average energy: we have Np As. Each A has z neighbors. About Npz/N of them are A, (N-Np)z/N are B. We have

\begin{displaymath}
\left\langle E\right\rangle = \frac{z\epsilon N_p(N-N_p)}{N}\end{displaymath}

Free energy:  
 \begin{displaymath}
 \begin{split}
 A &= -kT\ln Q =\  & \frac{z\epsilon N_p(N-N_p)}{N} +
 kT\ln\left(\frac{N_p!(N-N_p)!}{N!} \right)
 \end{split}\end{displaymath} (2)

Stirling formula:

\begin{displaymath}
\ln N!\approx N\ln N - N,\quad N\gg1\end{displaymath}

New variables:

\begin{displaymath}
\phi = \frac{N_p}{N},\quad \chi_F = \frac{z\epsilon}{kT}\end{displaymath}

Free energy:  
 \begin{displaymath}
 \begin{split}
 A &= \mathit{const}+\  & kTN\Bigl(\chi_F\phi(1-\phi) + \phi\ln\phi +
 (1-\phi)\ln(1-\phi)\Bigr)
 \end{split} \end{displaymath} (3)

Critical Point

System is symmetric--critical point is at $\phi=1/2$. We obtain

\begin{displaymath}
\frac{\partial^2 A}{\partial\phi^2} = 0\end{displaymath}

or

\begin{displaymath}
\frac{1}{\phi} + \frac{1}{1-\phi} - 2\chi_F = 0\end{displaymath}

which gives

\begin{displaymath}
\chi_F = \frac{z\epsilon}{kT} = 2\end{displaymath}

The system is mixed above critical point and demixed below it

Binodal & Spinodal

Free energy of Flory system below critical point
\begin{figure}
 \psfrag{A}{$A$}
 \psfrag{phi}{$\phi$}
 \psfrag{Binodal points}{B...
 ...rag{Spinodal points}{Spinodal points}
 \includegraphics{free_energy}\end{figure}
On spinodal the second derivative is zero:

\begin{displaymath}
\frac{1}{\phi} + \frac{1}{1-\phi} - 2\chi_F = 0\end{displaymath}

On binodal there is local minimum--first derivative is zero:

\begin{displaymath}
\ln\phi - (1-\phi)\ln(1-\phi) + \chi_F(1-2\phi) = 0\end{displaymath}

In critical point binodal & spinodal coincide:
\begin{figure}
 \psfrag{T}{$T$}
 \psfrag{Tc}{$T_c$}
 \psfrag{phi}{$\phi$}
 \psfr...
 ...nodal}
 \psfrag{Spinodal}{Spinodal}
 \includegraphics{phase_diagram}\end{figure}

Problems of Flory Theory

1.
It is not clear how to calculate next approximation(s)
2.
Works because of compensation of errors: Flory theory overestimates both energy and entropy--the resulting expression is ``more or less'' right.

next up previous
Next: Self-Consistent Field Theory Up: Mean Field Approach Previous: General Idea

© 1997 Boris Veytsman and Michael Kotelyanskii
Tue Oct 14 22:58:59 EDT 1997