next up previous
Next: Quiz Up: Spatial Inhomogeneity. Interfaces Previous: Mathematical Digression: Euler-Lagrange Equation

Subsections


Interface Layer in Landau Theory

Euler-Lagrange Equation

We need to minimize the functional

\begin{displaymath}
\begin{split}
 &A = A_0+ \\  & W\int\left[aM^2+dM^4-HM+g\left(\frac{\partial
 M}{\partial x}\right)^2\right]\,dx
 \end{split}\end{displaymath}

with

\begin{displaymath}
M(-\infty) = M_0, \quad M(\infty) = -M_0, \quad M_0 = \sqrt{-a/2d},\end{displaymath}

This is a Lagrange problem with

\begin{displaymath}
\mathcal{L} = aM^2+dM^4-HM+g{M'}^2\end{displaymath}

On the coexistence line H=0 (Why?). We have:

\begin{displaymath}
\begin{aligned}
 \frac{\partial\mathcal{L}}{\partial M} &= 2...
 ...\frac{\partial\mathcal{L}}{\partial M'} & = 2gM'
 \end{aligned}\end{displaymath}

and Euler-Lagrange equation becomes

 
gM''=aM+2dM3

(6)

Solution of Euler-Lagrange Equation

Multiply (6) by M'. Then

\begin{displaymath}
gM''M' = \frac{g}{2}\frac{d}{dx}\left(\frac{dM}{dx}\right)^2\end{displaymath}

and

\begin{displaymath}
(aM+2dM^3)M' = \frac12\frac{d}{dx}(aM^2+dM^4)\end{displaymath}

Therefore

\begin{displaymath}
\frac{g}{2}\frac{d}{dx}\left(\frac{dM}{dx}\right)^2 =
 \frac12\frac{d}{dx}(aM^2+dM^4) \end{displaymath}

and

\begin{displaymath}
g \left(\frac{dM}{dx}\right)^2 = aM^2+dM^4+C\end{displaymath}

To find C note that at $x\to-\infty$ we have

\begin{displaymath}
M'=0,\quad M^2=-a/2d, \quad aM^2+dM^4=-a^2/4d\end{displaymath}

We obtain:

\begin{displaymath}
C = \frac{a^2}{4d},\quad
 aM^2+dM^4+C = d\left(M^2-M_0^2\right)^2\end{displaymath}

This gives

\begin{displaymath}
g \left(\frac{dM}{dx}\right)^2 = \left(M^2-M_0^2\right)^2d\end{displaymath}

or  
 \begin{displaymath}
 \frac{dM}{dx} = -\sqrt{\frac{d}{g}}\left(M^2-M_0^2\right)\end{displaymath} (7)
and

\begin{displaymath}
\sqrt{\frac{g}{d}}\int\frac{dM}{M^2-M_0^2} = -x\end{displaymath}

Solution:  
 \begin{displaymath}
 x = \sqrt{-\frac{g}{2a}}\ln\left(\frac{M_0-M}{M+M_0}\right)\end{displaymath} (8)
This gives x(M). Inverting this function, we obtain density profile M(x)

Width of the interface  
 \begin{displaymath}
 L\sim\sqrt{-\frac{g}{2a}}\sim\xi\end{displaymath} (9)
The length of the interface is proportional to the correlation length!

Surface Tension

In the bulk the energy per unit volume is

\begin{displaymath}
f_0=\frac{A_0}{V}+aM_0^2+dM_0^4 = \frac{A_0}{V} - \frac{a^2}{4d} \end{displaymath}

In the interface layer we have free energy per unit volume

\begin{displaymath}
f = \frac{A_0}{V} +aM^2+dM^4 + g(M')^2 \end{displaymath}

Additional free energy per unit volume

\begin{displaymath}
\Delta f = f-f_0=2d(M-M_0)^2\end{displaymath}

Surface tension is surface energy per unit area, i.e.

\begin{displaymath}
\gamma = \int_{-\infty}^{\infty} \Delta f\,dx\end{displaymath}

Change of variables:

\begin{displaymath}
\gamma = \int_{M_0}^{-M_0} \Delta f\frac{dx}{dM}\,dM\end{displaymath}

or, substituting $\Delta f$ and M'  
 \begin{displaymath}
 \gamma=2\sqrt{gd}\int_{-M_0}^{M_0}(M_0^2-M^2)\,dM=
-\frac{4a}{3}\sqrt{\frac{g}{d}} \end{displaymath} (10)

Critical Behavior

What happens at $T\to T_c$? Coefficient a tends to zero as $a=\alpha(T-T_c)$.

From (9) and (10) we obtain:

\begin{displaymath}
L\sim (T_c-T)^{-1/2},\quad \gamma\sim(T-T_c)\end{displaymath}

As we are closer to the critical point, the interface layer becomes thicker, and the surface tension drops. Since $L\sim\xi$, correlation length diverges, and $\gamma\to0$ means that the difference between the phases disappears. The penalty for forming interface becomes lower, and fluctuations grow.


next up previous
Next: Quiz Up: Spatial Inhomogeneity. Interfaces Previous: Mathematical Digression: Euler-Lagrange Equation

© 1997 Boris Veytsman and Michael Kotelyanskii
Thu Oct 16 20:58:44 EDT 1997