next up previous
Next: Conclusions Up: Liquids. Density Correlation Functions Previous: Distribution Functions

Perturbation Theory

Suppose energy is the sum of two terms:

U=U0+U1

and we know how to calculate

\begin{displaymath}
Z_0 = \int \exp(-\beta U_0)\,d\tilde r\end{displaymath}

How can we calculate partition function Z?

Idea:
\begin{multline*}
Z = \int \exp\bigl(-\beta (U_0+U_1)\bigr)\,d\tilde r =\  Z_0
 \frac{1}{Z_0}\int\exp\bigl(-\beta (U_0+U_1)\bigr)\,d\tilde r \end{multline*}

But this is exactly  
 \begin{displaymath}
 Z= Z_0\left\langle \exp\bigl(-\beta U_1\bigr)\right\rangle_0\end{displaymath} (25)
with $\left\langle \ldots\right\rangle_0$--averaging over reference system with energy U0:

\begin{displaymath}
\left\langle \ldots\right\rangle_0 = \frac{1}{Z_0}\int\ldots\exp(-\beta U_0)\,d\tilde r\end{displaymath}

For the free energy:  
 \begin{displaymath}
\begin{aligned}
 -\beta A =& \log \bigl(\frac{Z_0}{N!\Lambda...
 ...langle \exp(-\beta U_1)\right\rangle_0 = A_0 + A_1\end{aligned}\end{displaymath} (26)
A1 can be expanded in $\beta$, by expanding $\log\left\langle exp(-\beta U_1)\right\rangle_0$. 
 \begin{displaymath}
A_1 = \left\langle U_1\right\rangle_0 + \sum_{n=2}^\infty\frac{ \omega_n}{n!}(-\beta)^n\end{displaymath} (27)
This makes a series in powers of the perturbation energy U1, averaged over the configurations of the unperturbed system. (They are contained in the $\omega$'s).

Van der Waals Equation of state:
Let's consider the hard-sphere system as a reference, and the attractive part of the molecular interaction v(r) as a perturbation.

\begin{displaymath}
\left\langle U_1\right\rangle_0 = \frac{\rho^2V}{2}\int_0^\infty v(r) g_{HS}(r) 4\pi r^2 dr\end{displaymath}

Assuming at low densities:

\begin{displaymath}
g_{HS}(r) = 
\begin{cases}
0\quad r<\sigma \\ 1\quad r\gt\sigma\end{cases}\end{displaymath}

\begin{displaymath}
\left\langle U_1\right\rangle_0= -aN\rho \quad \mathrm{where} a=-\int_\sigma^\infty v(r)r^2dr\end{displaymath}

For the hard spheres system:

\begin{displaymath}
Z_0=(V-Nb)^N, \quad F_0=-NkT\log(V-Nb)\end{displaymath}

Substituting this into (26,27), and differentiating with respect to volume, obtain the Van der Waals equation of state:

\begin{displaymath}
\frac{p}{kT}=\frac{\rho}{1-\rho b}-\frac{a\rho^2}{kT}\end{displaymath}


next up previous
Next: Conclusions Up: Liquids. Density Correlation Functions Previous: Distribution Functions

© 1997 Boris Veytsman and Michael Kotelyanskii
Thu Sep 25 23:59:09 EDT 1997