next up previous
Next: Grand Canonical Ensemble Up: Ensembles and Thermodynamic Potentials Previous: Aside: Quiz Solutions

Subsections


Entropy, Energy and Free Energy in Canonical Ensemble

Averaging Entropy

We know how to calculate mean energy. How can we calculate mean entropy ?

Consider a macroscopic state with energy E in canonical ensemble:
\begin{figure*}
 \InputIfFileExists{canonical.pstex_t}{}{}\end{figure*}
Additivity of entropy:

SA = SM - SB

Probability of a microscopic state in canonical ensemble:
\begin{multline*}
\Prob(A_i) = \frac{W_B(E_0-E_i)}{\text{Total \char93  of states of $M$}} =\  \exp\bigl((S_B-S_M)/k\bigr)\end{multline*}
We obtained:

\begin{displaymath}
S_A = -k\ln\bigl(\Prob(A_i)\bigr)\end{displaymath}

Entropy of a macroscopic state with energy E in a canonical ensemble equals minus k log of the distribution function

\begin{displaymath}
\Prob(A_i) = \frac{1}{Q}\exp(-E_i/kT)\end{displaymath}

Average entropy:
\begin{multline*}
\left\langle S\right\rangle = -k\sum_E \Prob(E)\ln\bigl(\Prob(...
 ...{E_i}{kT}\right] = k\ln Q + \frac{\left\langle E\right\rangle}{T}\end{multline*}
Since $A=-kT\ln Q$, we obtained:

A = E - TS

We know that

\begin{displaymath}
dE = T\,dS - P\,dV\end{displaymath}

and since $d(TS)= T\,dS + S\,dT$,

\begin{displaymath}
dA = -S\,dT-P\,dV\end{displaymath}

Aside: Legendre Transformations

Suppose we have a function f(x). New variables:

\begin{displaymath}
p=f'(x), \quad p=p(x) \leftrightarrow x = x(p)\end{displaymath}

Consider the function

\begin{displaymath}
g(p) = f\bigl(x(p)\bigr) - px(p)\end{displaymath}

We see that:

\begin{displaymath}
dg = p\,dx - p\,dx - x\,dp = -x\,dp\end{displaymath}

or

g'(p) = -x

The function g is Legendre transformation of the function f.

Example: Hamilton & Lagrange Mechanics.

Free energy is Legendre transformation of energy (or entropy). In particular

\begin{displaymath}
\left(\frac{\partial E}{\partial S}\right)_V = T,\quad
 \left(\frac{\partial A}{\partial T}\right)_V = -S\end{displaymath}

It means that A=A(T,V)
next up previous
Next: Grand Canonical Ensemble Up: Ensembles and Thermodynamic Potentials Previous: Aside: Quiz Solutions

© 1997 Boris Veytsman and Michael Kotelyanskii
Tue Sep 9 22:39:08 EDT 1997