next up previous
Next: Equivalence of Ensembles Up: Ensembles and Thermodynamic Potentials Previous: Grand Canonical Ensemble

Subsections


General Case: How to Introduce a New Ensemble

General Idea

We have an extensive quantity x and the corresponding conjugated variable X:

\begin{displaymath}
X = -\left(\frac{\partial S}{\partial x}\right)_{E,V,N,\dots}\end{displaymath}

Microcanonical ensemble:
$x=\mathit{const}$
x-ensemble:
x is exchanged with the universe, X=const
Probability:

\begin{displaymath}
\Prob{A_i} = \frac{1}{Q_x}\exp(Xx_i/kT)\end{displaymath}

Thermodynamic potential:

\begin{displaymath}
\Omega_x = -kT\ln Q_x = E - xX\end{displaymath}

$\Omega_x$ is a Legendre transformation of E!

Any conserved extensive quantity generates a conjugated force, ensemble and thermodynamic potential!

Examples

Isobaric-Adiabatic Ensemble

We can change volume, but $S=\mathit{const}$, $N=\mathit{const}$ (infinitely flexible insulated walls)

Extensive variable: V, thermodynamic force: P. Probability of a state:

\begin{displaymath}
\Prob(A_i) = \frac{1}{Q_V}\exp(PV/kT)\end{displaymath}

Thermodynamic potential:

\begin{displaymath}
\begin{gathered}
 H = E+PV\  dE = T\,dS - P\,dV + \mu\,dN\  dH = T\,dS + V\,dP + \mu\,dN
 \end{gathered}\end{displaymath}

H(P,S,N) is enthalpy

Isobaric-Isothermic Ensemble

Both S and V are not constant.

\begin{displaymath}
\Prob(A_i) = \frac{1}{\Delta}\exp(-E_i/kT+PV/kT)\end{displaymath}

Gibbs free energy G(P,T,N):

\begin{displaymath}
\begin{gathered}
 G = -kT\ln\Delta = E -TS +PV\  dG = -T\,dS + V\,dP + \mu\,dN
 \end{gathered}\end{displaymath}

Consequence:
$G=\mu N$

Epitome

Phenomenological Thermodynamics is the study of properties of Legendre transformations of convex functions.

Unknown Mathematician



© 1997 Boris Veytsman and Michael Kotelyanskii
Tue Sep 9 22:39:08 EDT 1997