next up previous
Next: Applications of Ising Model Up: Ising Model and Its Previous: Model

Subsections


Phase Transitions of Ising Model

Zero Field. Curie Point

Let H=0 (symmetric case). Entropy wants spins to be disoriented, energy--to be parallel


\begin{figure}
 \psfrag{1}{$1$}
 \psfrag{-1}{$-1$}
 \psfrag{M}{$M$}
 \psfrag{T}{$T$}
 \psfrag{Tc}{$T_c$}
 \psfrag{H=0}{$H=0$}
 \includegraphics{MT}\end{figure}

Non-Zero Field. Susceptibility

If $H\ne0$, magnetization M is parallel to H. There is a function M(H,T). What happens at $H\to0$?

In critical point susceptibility is infinity!

Since amplitude of fluctuations is

\begin{displaymath}
\left\langle (\Delta M)^2\right\rangle = \frac{\chi kT}{V}\end{displaymath}

the fluctuations infinitely grow at Tc!

Phase Diagram


\begin{figure}
 \psfrag{T}{$T$}
 \psfrag{H}{$H$}
 \psfrag{Tc}{$T_c$}
 \psfrag{Fi...
 ...se transitions}{First order phase transitions}
 \includegraphics{HT}\end{figure}


© 1997 Boris Veytsman and Michael Kotelyanskii
Mon Oct 13 22:07:20 EDT 1997